Optimization Techniques on Riemannian Manifolds

نویسنده

  • Steven Thomas Smith
چکیده

The techniques and analysis presented in this paper provide new methods to solve optimization problems posed on Riemannian manifolds. A new point of view is offered for the solution of constrained optimization problems. Some classical optimization techniques on Euclidean space are generalized to Riemannian manifolds. Several algorithms are presented and their convergence properties are analyzed employing the Riemannian structure of the manifold. Specifically, two apparently new algorithms, which can be thought of as Newton’s method and the conjugate gradient method on Riemannian manifolds, are presented and shown to possess, respectively, quadratic and superlinear convergence. Examples of each method on certain Riemannian manifolds are given with the results of numerical experiments. Rayleigh’s quotient defined on the sphere is one example. It is shown that Newton’s method applied to this function converges cubically, and that the Rayleigh quotient iteration is an efficient approximation of Newton’s method. The Riemannian version of the conjugate gradient method applied to this function gives a new algorithm for finding the eigenvectors corresponding to the extreme eigenvalues of a symmetric matrix. Another example arises from extremizing the function tr ΘQΘN on the special orthogonal group. In a similar example, it is shown that Newton’s method applied to the sum of the squares of the off-diagonal entries of a symmetric matrix converges cubically.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE

A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...

متن کامل

On a class of paracontact Riemannian manifold

We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.

متن کامل

Vector optimization problems under d-invexity on Riemannian manifolds

The concept of d−invexity for functions defined on Riemannian manifolds is introduced. Then, this notion is used to obtain optimality conditions for vector optimization problems on Riemannian manifolds. M.S.C. 2010: 58E17, 90C26.

متن کامل

Riemannian SVRG: Fast Stochastic Optimization on Riemannian Manifolds

We study optimization of finite sums of geodesically smooth functions on Riemannian manifolds. Although variance reduction techniques for optimizing finite-sums have witnessed tremendous attention in the recent years, existing work is limited to vector space problems. We introduce Riemannian SVRG (RSVRG), a new variance reduced Riemannian optimization method. We analyze RSVRG for both geodesica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1407.5965  شماره 

صفحات  -

تاریخ انتشار 2014