Optimization Techniques on Riemannian Manifolds
نویسنده
چکیده
The techniques and analysis presented in this paper provide new methods to solve optimization problems posed on Riemannian manifolds. A new point of view is offered for the solution of constrained optimization problems. Some classical optimization techniques on Euclidean space are generalized to Riemannian manifolds. Several algorithms are presented and their convergence properties are analyzed employing the Riemannian structure of the manifold. Specifically, two apparently new algorithms, which can be thought of as Newton’s method and the conjugate gradient method on Riemannian manifolds, are presented and shown to possess, respectively, quadratic and superlinear convergence. Examples of each method on certain Riemannian manifolds are given with the results of numerical experiments. Rayleigh’s quotient defined on the sphere is one example. It is shown that Newton’s method applied to this function converges cubically, and that the Rayleigh quotient iteration is an efficient approximation of Newton’s method. The Riemannian version of the conjugate gradient method applied to this function gives a new algorithm for finding the eigenvectors corresponding to the extreme eigenvalues of a symmetric matrix. Another example arises from extremizing the function tr ΘQΘN on the special orthogonal group. In a similar example, it is shown that Newton’s method applied to the sum of the squares of the off-diagonal entries of a symmetric matrix converges cubically.
منابع مشابه
A Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE
A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...
متن کاملOn a class of paracontact Riemannian manifold
We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.
متن کاملVector optimization problems under d-invexity on Riemannian manifolds
The concept of d−invexity for functions defined on Riemannian manifolds is introduced. Then, this notion is used to obtain optimality conditions for vector optimization problems on Riemannian manifolds. M.S.C. 2010: 58E17, 90C26.
متن کاملRiemannian SVRG: Fast Stochastic Optimization on Riemannian Manifolds
We study optimization of finite sums of geodesically smooth functions on Riemannian manifolds. Although variance reduction techniques for optimizing finite-sums have witnessed tremendous attention in the recent years, existing work is limited to vector space problems. We introduce Riemannian SVRG (RSVRG), a new variance reduced Riemannian optimization method. We analyze RSVRG for both geodesica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1407.5965 شماره
صفحات -
تاریخ انتشار 2014